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TRACED PREMONOIDAL CATEGORIES

Nick Benton
1

and Martin Hyland
2

Abstract. Motivated by some examples from functional program-
ming, we propose a generalization of the notion of trace to symmetric
premonoidal categories and of Conway operators to Freyd categories.
We show that in a Freyd category, these notions are equivalent, gener-
alizing a well-known theorem relating traces and Conway operators in
cartesian categories.
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1. Introduction

Monads were introduced into computer science by Moggi [25] as a structur-
ing device in denotational semantics and soon became a popular abstraction for
writing actual programs, particularly for expressing and controlling side-effects
in ‘pure’ functional programming languages such as Haskell [24, 33]. Power and
Robinson subsequently introduced premonoidal categories as a generalization of
Moggi’s computational models [30], whilst Hughes developed arrows, which are
the equivalent programming abstraction [18].

Some uses of monads in functional programming seem to call for a kind of re-
cursion operator on computations for which, informally, the recursion ‘only takes
place over the values’. For example, the Haskell Prelude defines the (internally im-
plemented) ST and IO monads for, respectively, potentially state-manipulating and
input/output-performing computations. These come equipped with polymorphic
functions

fixST :: (a -> ST a) -> ST a
fixIO :: (a -> IO a) -> IO a
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which allow computations to be recursively defined in terms of the values they
produce. For example, the following program uses fixIO1 to extend a cunning
cyclic programming trick due to Bird [1] to the case of side-effecting computations.
replacemin computes a tree in which every leaf of the argument has been replaced
by the minimum of all the leaves. It does this in a single pass over the input and
prints out each leaf as it encounters it:2

data Tree a = Leaf a | Branch (Tree a) (Tree a)

f :: Tree Int -> Int -> IO (Int,Tree Int)
f (Leaf n) m = do print n

return (n, Leaf m)
f (Branch t1 t2) m =

do (m1,r1) <- f t1 m
(m2,r2) <- f t2 m
return (min m1 m2, Branch r1 r2)

replacemin :: Tree Int -> IO (Int, Tree Int)
-- m is argument to and part of the result of f
replacemin t = fixIO (\ ~(m,r) -> f t m)

As another (though still somewhat contrived) example, consider modelling the
heap of a fictitious pure Scheme-like language at a fairly low level. One might
interpret heap-manipulating computations using a monad T which is an instance
of a type class something like this

class Monad T => HeapMonad T where
alloc :: (Int, Int) -> T Int
lookup :: Int -> T (Int,Int)
free :: Int -> T ()

The intention is that alloc takes two integers and returns a computation which
finds a free cons cell in the heap, fills it with those two integers and returns the
(strictly positive) address of the allocated cell. lookup takes an integer address
and returns the contents of that cons cell, whilst free marks a particular address
as available for future allocations. Since the values in the car and cdr of cells
can be used as the addresses of other cells, we can intepret programs which build
data structures such as lists in the heap. What if the language we are interpreting
can create cyclic structures (for example, closures for recursive functions)? At the
machine level, cyclic structures are created by allocating cells containing dummy

1We should note that fixIO does not actually satisfy the axioms we will propose. However,

the basic pattern would remain the same, though the code would be a little longer, if we had

performed side-effects involving state instead.
2The tilde ~ on the last line specifies ‘lazy’ pattern matching for the pair (m,r). Haskell’s

tuples are actually lifted products and pattern matching is, by default, strict. Without the tilde

the function would diverge.
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values and then ‘tying the knot’ by overwriting those dummy values with the ad-
dresses returned by the allocator. Hence we could just provide destructive update
operations

setcar :: Int -> Int -> T ()
setcdr :: Int -> Int -> T ()

and use those to create cycles. However, if the interpreted language itself does
not include destructive assignment, but only creates cycles using higher-level con-
structs, then adding assignment operations to the monad breaks an abstraction
barrier. One solution is to add a recursion operation to the monad

fixT :: (a -> T a) -> T a

with a definition such that the following code creates a two-element cyclic list (and
returns the addresses of both cells):

onetwocycle :: T (int,int)
onetwocycle = fixT (\~(x,y)->

do { x’ <- alloc(1,y)
y’ <- alloc(2,x)
return (x’,y’)

})

Observe that although the computation is recursively defined, it should only per-
form the two allocation side-effects once.

Many of the real uses of this kind of recursion have the flavour of the previous
example: they involve computations which create cyclic structures for which the
identity, order of creation or multiplicity of creation of the objects in the structure
is significant. An interesting example arises in work on using Haskell to model
hardware. Early versions of both Lava [2] and Hawk [23] specified circuits in a
monadic style, instantiating the monad differently for different applications (such
simulating the circuit, generating a netlist or interfacing with a theorem prover).
Cyclic circuits (i.e. those with feedback) were defined in essentially the style used
to define onetwocycle above. Lava has moved away from that style, in part
because it is syntactically awkward.3 Launchbury et al. [23] also noted that pro-
gramming in a monadic style with fixT is uncomfortable, and suggested extending
Haskell’s do notation to allow recursive bindings. That suggestion was followed
up by Launchbury and Erkök, who proposed an axiomatization of operators like
fixT (which they call mfix) and showed how the do notation can be extended to
allow recursive bindings in the case that the underlying monad supports such an
mfix operation [9, 22].

Launchbury and Erkök’s axiomatization of mfix is partly in terms of equa-
tions and partly in terms of inequations, intended to be interpreted in the ‘usual’
(slightly informal) concrete domain theoretic model of Haskell. One striking fea-
ture of [22] is that it does not appear to build on any of the large body of existing

3Lava now uses a modified version of Haskell with ‘observable sharing’: allowing new name

generation as an implicit side-effect of every expression and hence changing the equational theory

of the language [6].
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work on axiomatic/categorical treatments of recursion, even those (such as [8])
which consider fixed points in terms of monads. The authors cite some of this
work but state, quite correctly, that the non-standard kind of recursion in which
they are interested is different from that covered in the literature. Although the
presence of a fixpoint object [8], for example, allows an operator with the same
type as mfix to be defined, it is not of the kind we want.

From a categorical perspective, we seem to want a notion of recursion or feed-
back on the Kleisli category of a CCC with a strong monad. There is a special
case of this situation in which earlier work does provide an answer. Although none
of Launchbury and Erkök’s examples are of commutative monads, in that case the
Kleisli category will be symmetric monoidal and Joyal, Street and Verity’s notion
of trace seems to fit the bill [21].

In the general case of a non-commutative monad, however, the Kleisli category
will only be symmetric premonoidal. The work described here grew firstly from the
natural mathematical question of what the right definition of traced premonoidal
category might be, and secondly from wondering whether an answer might provide
a sensible categorical semantics for the kind of fixpoint operators described in [22].
We give a natural, straightforward and well-behaved answer to the first question,
though it only accounts for a rather special subset of the cases considered by
Launchbury and Erkök.

2. Background

2.1. Premonoidal Categories

For a careful definition of the notion of (symmetric) premonoidal category and
(symmetric) premonoidal functor, see Power and Robinson’s paper [30]. Briefly,
a premonoidal category is a monoidal category except that the tensor product ⊗
need only be a functor in each of the two variables separately. Thus if f : A → B
and g : A′ → B′ in a premonoidal category K then the two evident morphisms
A ⊗ A′ → B ⊗ B′

f � g = A ⊗ A′ f⊗A′
−→ B ⊗ A′ B⊗g−→ B ⊗ B′

f � g = A ⊗ A′ A⊗g−→ A ⊗ B′ f⊗B′
−→ B ⊗ B′

are not generally equal.
We generally write I for the unit of the tensor in a (pre)monoidal category, σ

for the symmetry if there is one, and λ, ρ, α for the natural isomorphisms

λ : I ⊗ A → A

ρ : A ⊗ I → A

α : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C)
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However, since we have coherence theorems for (symmetric) (pre)monoidal cate-
gories [30], we will usually elide the structural isomorphisms.
Definition 2.1. A morphism f : A → B in a premonoidal category K is central
if for all g : A′ → B′ in K, f � g = f � g. If at least one of f and g is central, then
we may unambiguously write f ⊗ g. The centre Z(K) of a premonoidal category
K is the monoidal subcategory of K with the same objects but only the central
morphisms.

The inclusion functor Z(K) → K is a strict, identity-on-objects premonoidal
functor (and symmetric if K is). In more recent work Power in particular has
stressed the importance from the algebraic point of view in having an explicit
choice of centre. That is, one is interested in the situation where one has a functor
J : M → K from a specified (symmetric) monoidal subcategory of a (symmetric)
premonoidal K; J factors through Z(K), so this amounts to specifying a particular
subcategory of central morphisms. (For many results J does not even need to be
faithful, but we do not consider that generality here.) We call a J : M → K as
above a centred premonoidal category, but since this is our preferred notion we
usually drop the ‘centred’. In this context, by central morphisms we shall mean
the morphisms of M. One should think of M as a category of values and K as
a category of possibly-effectful computations. An important special case is the
following:
Definition 2.2. A Freyd category [31] is specified by a cartesian category C, a
symmetric premonoidal category K and an identity-on-objects strict symmetric
premonoidal functor J : C → K.

Note that morphisms in the specified centre of a Freyd category are ‘pure’ not
merely in the sense of commuting with arbitrary effectful computations, but also
in being copyable and discardable.
Example 2.3. If T is a strong monad on a symmetric monoidal category M, then
the Kleisli category MT is symmetric premonoidal and the canonical functor from
M to MT is strict symmetric premonoidal. Thus in the case that M is cartesian,
we have a Freyd category. If the monad is commutative, then MT is symmetric
monoidal and J : M → MT is strict symmetric monoidal.

2.2. Traces and Fixpoints

The notion of traced monoidal category was introduced in [21]. The use of traces
to interpret recursion in programming languages and the relationship between
traces and fixpoints have attracted much attention in recent years, beginning with
Hasegawa’s thesis [16]. Categorical axiomatizations of fixpoint operators have been
extensively studied, see [4, 8, 27] for example; a particularly crisp and up-to-date
account appears in [32].
Definition 2.4. A trace on a symmetric monoidal category (M,⊗, I, λ, ρ, α, σ) is
a family of functions

trU
A,B : M(A ⊗ U,B ⊗ U) → M(A,B)
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satisfying the following conditions:
Naturality in A (Left Tightening):

If f : A′ ⊗ U → B ⊗ U , g : A → A′ then

trU
A,B((g ⊗ U); f) = g; trU

A′,B(f) : A → B

Naturality in B (Right Tightening):
If f : A ⊗ U → B′ ⊗ U , g : B′ → B then

trU
A,B(f ; (g ⊗ U)) = trU

A,B′(f); g : A → B

Dinaturality (Sliding): If f : A ⊗ U → B ⊗ V , g : V → U then

trU
A,B(f ; (B ⊗ g)) = trV

A,B((A ⊗ g); f) : A → B

Action (Vanishing): If f : A → B then

trI
A,B(ρ; f ; ρ−1) = f : A → B

and if f : A ⊗ (U ⊗ V ) → B ⊗ (U ⊗ V ) then

trU⊗V
A,B (f) = trU

A,B(trV
A⊗U,B⊗U (α; f ;α−1))

Superposing: If f : A ⊗ U → B ⊗ U then

trU
C⊗A,C⊗B(α;C ⊗ f ;α−1)
= C ⊗ trU

A,B(f) : C ⊗ A → C ⊗ B

Yanking: For all U , trU
U,U (σU,U ) = U : U → U .

Monoidal categories provide a formal basis for reasoning about many of the
graphical ‘boxes and wires’ notations used in computer science. A precise foun-
dation for this has been sketched by Hyland and Power [19]. Traced monoidal
categories provide a formal basis for circuit-like notations involving feedback or
cycles. In one reading at least, they are the building blocks for Girard’s Geometry
of Interaction [15]. We recall a result of Joyal, Street and Verity [21]:
Theorem 2.5. The forgetful 2-functor from the 2-category of compact closed cat-
egories to that of traced symmetric monoidal categories has a left biadjoint.

The basic Geometry of Interaction construction is an explicit form of this biad-
joint 2-functor.

We present the trace axioms graphically in Figure 1, though we do not consider
the formal semantics of such diagrams here.
Definition 2.6. A parameterized fixpoint operator on a cartesian category C is a
family of functions

(·)† : C(A × U,U) → C(A,U)
satisfying
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f
g =

f
g

Left Tightening

f g = f g

Right Tightening

f = f

Vanishing (nullary)

f = f

Vanishing (binary)

���� =

Yanking

g
f = f

g

Sliding

f = f

Superposing

Figure 1. Trace Axioms

Naturality: If f : B × U → U and g : A → B then

g; f† = ((g × U); f)† : A → U

Fixed Point Property: If f : A × U → U then

〈A, f†〉; f = f† : A → U
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The above definition is rather weak. Well-behaved fixpoint operators typically
satisfy other interesting conditions.
Definition 2.7. A Conway operator is a parameterized fixpoint operator which
additionally satisfies

Dinaturality: If f : A × U → V and g : V → U then

(f ; g)† = (A × g; f)†; g : A → U

Diagonal Property: If f : A × U × U → U then

((A × ∆); f)† = (f†)† : A → U

The Conway operator axioms are shown graphically in Figure 2. Our terminol-
ogy follows that of Bloom and Ésik [4], though they consider the opposite situation.
They work with categories with coproducts “generated by a single object”, that
is, they consider the opposite of Lawvere theories. For them a Conway theory is
the opposite of a Lawvere theory equipped with a Conway operator in our sense.
Readers familiar with [4] will observe the following

• Our naturality corresponds to their parameter identity.
• Our fixed point property corresponds to their fixed point equation.
• Our dinaturality corresponds to their simplified composition identity.
• Our diagonal property corresponds to their double dagger identity.

In all cases, the extension from Lawvere theories to general cartesian categories
is routine. To the extent that our terminology differs from that of [4], it draws
attention to familiar category-theoretic notions.

We make a few remarks on axiomatization. The axioms for a Conway opera-
tor imply various other useful properties including the Bekič property (allowing
simultaneous fixed points to be reduced to sequential ones) and parameterized
dinaturality (corresponding to the composition identity of [4]):
Definition 2.8. A fixpoint operator on a cartesian category satisfies parameterized
dinaturality if whenever f : A × U → V and g : A × V → U then

〈A, (〈π1, g〉; f)†〉; g = (〈π1, f〉; g)† : A → U

There are a number of sets of axioms equivalent to Definition 2.7 which can be
gleaned from [4], see also [16]. We mention in particular the axiomatization which
consists of naturality, parameterized dinaturality and the diagonal property.

One focus of other work is the complete axiomatization of identities holding in
special classes of models. Conway operators (Conway theories) are a stepping stone
on the way. Adding the commutative identities of [4] produces a complete axiom-
atization, inter alia, for the least fixpoint operator in domains. These apparently
mysterious identities follow most usefully from ‘uniformity properties’ [4, 11, 12].
Simpson and Plotkin [32] explain the generality of the approach via uniformity,
which also has other potential uses [17]. We, however, do not consider issues of
uniformity further here.
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g f = g f

Naturality

f =
��
��

f
f

Fixed Point Property

f g =
g

f g

Dinaturality

���� f = f

Diagonal Property

Figure 2. Conway Axioms

An important theorem about traces and fixpoints is the following, which is due
(independently) to Hasegawa and to Hyland, though its essential combinatorial
content had been observed earlier in a slightly different context [3–5]:

Theorem 2.9. To give a trace on a cartesian category C is to give a Conway
operator on C. �

For us the notion of trace is paramount. It is completely general and encapsu-
lates the idea of feedback (cyclic graphs) in computer science; and it supports the
Geometry of Interaction construction which models the dynamics of proofs.

3. Traces and Fixpoint Operators on Premonoidal

Categories

So, what is an appropriate generalization of the notions of trace and fixpoint
operator to the premonoidal case? We want definitions which make sense, have
useful concrete instances, give the monoidal versions as special cases and lead to
a generalization of Theorem 2.9.



10 TITLE WILL BE SET BY THE PUBLISHER

3.1. Symmetric Premonoidal Traces

We start by trying to generalize the definition of trace to a centred symmetric
premonoidal category J : M → K. Although none of the conditions in Defini-
tion 2.4 are expressed in terms of tensoring arbitrary morphisms (in which case we
would certainly have to re-examine them), we cannot simply leave the definition
unchanged:

Proposition 3.1. A symmetric premonoidal category with a trace as defined in
Definition 2.4 is actually monoidal.

Proof. Assume f : A → B and g : A′ → B′. Then

f � g = f ⊗ A′;B ⊗ g (def)

= f ⊗ A′;B ⊗ (g; trB′
B′,B′(σ)) (yank)

= f ⊗ A′;B ⊗ (trB′
A′,B′(g ⊗ B′;σ)) (leftt)

= f ⊗ A′; trB′
B⊗A′,B⊗B′(α;B ⊗ (g ⊗ B′;σ);α−1) (super)

= trB′
A⊗A′,B⊗B′(((f ⊗ A′) ⊗ B′);α;B ⊗ (g ⊗ B′;σ);α−1) (leftt)

= trB′
A⊗A′,B⊗B′((f ⊗ A′) ⊗ B′;α;B ⊗ σ;α−1; (B ⊗ B′) ⊗ g) (struct)

= trA′
A⊗A′,B⊗B′((A ⊗ A′) ⊗ g; (f ⊗ A′) ⊗ B′;α;B ⊗ σ;α−1) (slide)

= trA′
A⊗A′,B⊗B′((A ⊗ A′) ⊗ g;α;A ⊗ σ;α−1; (f ⊗ B′) ⊗ A′) (struct)

= trA′
A⊗A′,A⊗B′((A ⊗ A′) ⊗ g;α;A ⊗ σ;α−1); f ⊗ B′ (rightt)

= trA′
A⊗A′,A⊗B′(α;A ⊗ (σ; (g ⊗ A′));α−1); f ⊗ B′ (struct)

= A ⊗ trA′
A′,B′(σ; g ⊗ A′); f ⊗ B′ (super)

= A ⊗ (trA′
A′,A′(σ); g) ; f ⊗ B′ (rightt)

= A ⊗ g ; f ⊗ B′ (yank)
= f � g (def)

�

The key step in the above proof uses the Sliding axiom to commute the side-
effects of two computations. This observation motivates the following definition:

Definition 3.2. A trace on a centred symmetric premonoidal category J : M → K

is is a family of functions

trU
A,B : K(A ⊗ U,B ⊗ U) → K(A,B)

satisfying the same conditions given in Definition 2.4 except that the Sliding axiom
is replaced by
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Central Sliding: If f : A ⊗ U → B ⊗ V and if g : V → U is a central
morphism then

trU
A,B(f ; (B ⊗ g)) = trV

A,B((A ⊗ g); f) : A → B

and we impose the further requirement

Centre Preservation: If f : A ⊗ U → B ⊗ U is central then so is trU
A,B f :

A → B.

The axioms of a premonoidal trace are shown in Figure 3, where we follow
Jeffrey [20] in using a heavy line to indicate the sequencing of effects in K (and that
line runs outside those boxes intended to represent central morphisms). Clearly,
if J : M → K has a premonoidal trace on K, the restriction of that trace to
M is a trace operator in the traditional sense of Definition 2.4. In particular,
Definition 3.2 really is a generalization of Definition 2.4.

Requiring the trace to preserve the distinguished centre M is largely a matter
of taste: we prefer to keep our equations algebraic. Even without the condition it
is still easy to see that the trace preserves Z(K):

Proposition 3.3. If f : A ⊗ U → B ⊗ U is in Z(K) and g : C → D then
g � trU

A,B(f) = g � trU
A,B(f).

Proof.

g � trU
A,B(f) = g ⊗ A;D ⊗ trU

A,B(f)

= g ⊗ A; trU
D⊗A,D⊗B(D ⊗ f) (super)

= trU
C⊗A,D⊗B(g ⊗ A ⊗ U ;D ⊗ f) (leftt)

= trU
C⊗A,D⊗B(C ⊗ f ; g ⊗ B ⊗ U) (centrality)

= trU
C⊗A,C⊗B(C ⊗ f); g ⊗ B (rightt)

= C ⊗ trU
A,B(f); g ⊗ B (super)

= g � trU
A,B(f)

�

Thus there is an obvious (non-algebraic) notion of traced premonoidal category.
If K is such and we choose J : M → K giving a centred premonoidal category then
we may fail to get a trace on J : M → K since M may fail to be closed under trace
(though one can then just close it).

It might also be remarked that the premonoidal sliding condition appears some-
what asymmetric, since it requires that g, rather than one of f and g, be central.
However, a little calculation shows that the symmetric case is a consequence:

Proposition 3.4. Assume f : A ⊗ U → B ⊗ V is central and g : V → U , then
trV

A,B((A ⊗ g); f) = trU
A,B(f ;B ⊗ g).
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f
g =

f
g

Left Tightening

f g = f g

Right Tightening

f = f

Vanishing (nullary)

f = f

Vanishing (binary)

���� =

Yanking

g
f = f

g

Central Sliding

f = f

Superposing

Figure 3. Premonoidal Trace Axioms
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Proof.

trV
A,B((A ⊗ g); f)

= trV
A,B((A ⊗ g); f); trB

B,B(σ) (yank)

= trB
A,B(trV

A,B((A ⊗ g); f) ⊗ B;σ) (rightt)

= trB
A,B(σ;B ⊗ trV

A,B((A ⊗ g); f)) (nat)

= trB
A,B(σ; trV

B⊗A,B⊗B(α;B ⊗ ((A ⊗ g); f);α−1)) (super)

= trB
A,B(trV

A⊗B,B⊗B(σ ⊗ V ;α;B ⊗ ((A ⊗ g); f);α−1)) (leftt)

= trB⊗V
A,B (α−1;σ ⊗ V ;α;B ⊗ (A ⊗ g);B ⊗ f) (action)

= trA⊗U
A,B (A ⊗ f ;α−1;σ ⊗ V ;α;B ⊗ (A ⊗ g))

(premon sliding, as B ⊗ f is central)

= trA⊗U
A,B (A ⊗ (f ; (B ⊗ g));σ;α;B ⊗ σ) (struct)

= trA
A,B(trU

A⊗A,B⊗A(α;A ⊗ (f ;B ⊗ g);σ;α;B ⊗ σ;α−1)) (action)

= trA
A,B(trU

A⊗A,B⊗A(α;A ⊗ (f ;B ⊗ g);α−1;σ ⊗ U)) (struct)

= trA
A,B(trU

A⊗A,A⊗B(α;A ⊗ (f ;B ⊗ g);α−1); σ) (rightt)

= trA
A,B(A ⊗ trU

A,B(f ;B ⊗ g);σ) (super)

= trA
A,B(σ; trU

A,B(f ;B ⊗ g) ⊗ A) (nat)

= trA
A,A(σ); trU

A,B(f ;B ⊗ g) (leftt)

= trU
A,B(f ;B ⊗ g) (yank)

�

3.2. Symmetric Premonoidal Fixpoints

We now turn to generalizing the notion of fixpoint operator to the premonoidal
case. Since some of the axioms involve duplication and discarding, we will assume
that we are working in a Freyd category J : C → K. We also use ∆, π1, 〈·, ·〉, etc.
as shorthand notation for the lifting of the appropriate operations from C to K

(i.e. we elide uses of J). The notation 〈f, g〉 is ambiguous unless we specify the
order in which the components are computed, but we shall only use it in the case
one of the maps is central.

Definition 3.5. A parameterized fixpoint operator on a Freyd category J : C → K

is a family of functions

(·)∗ : K(A ⊗ U,U) → K(A,U)

which satisfies

Centre Preservation: If f : A ⊗ U → U is central then so is f∗ : A → U .
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Naturality: If f : B ⊗ U → U and g : A → B then

g; f∗ = ((g ⊗ U); f)∗ : A → U

Central Fixed Point Property: If f : A ⊗ U → U is central, then

〈A, f∗〉; f = f∗ : A → U

Just as in the cartesian case, this is the bare minimum one might require of a
fixpoint operator. We are interested in rather stronger conditions, and propose
the following as an appropriate generalization of Conway operators on cartesian
categories:
Definition 3.6. A parameterized fixpoint operator (·)∗ on a Freyd category is a
Conway operator if it satisfies the following conditions:

Parallel Property: If f : A ⊗ U → U and g : B ⊗ V → V with one of f
and g central then

(A ⊗ σ ⊗ V ; f ⊗ g)∗ = f∗ ⊗ g∗ : A ⊗ B → U ⊗ V

Withering Property: If f : A ⊗ U → B ⊗ U and g : B → C then

(〈π1, π3〉; f ; g ⊗ U)∗ = (〈π1, π3〉; f)∗; g ⊗ U : A → C ⊗ U

Diagonal Property: If f : A ⊗ U ⊗ U → U then

((A ⊗ ∆); f)∗ = (f∗)∗ : A → U

Dinaturality: If f : A ⊗ U → V and g : V → U with g central then

(f ; g)∗ = (A ⊗ g; f)∗; g : A → U

The axioms of a premonoidal Conway operator are shown graphically in Fig-
ure 4. Dinaturality and the diagonal property are essentially the same as in the
cartesian case, but the parallel and withering properties are more unusual. There
is a natural generalization of parameterized dinaturality to Freyd categories:
Definition 3.7. A parameterized fixpoint operator (·)∗ on a Freyd category satis-
fies parameterized central dinaturality if, given f : A⊗U → V and g : A⊗ V → U
with g central

(〈π1, f〉; g)∗ = 〈A, (〈π1, g〉; f)∗〉; g
As in the cartesian case, parameterized central dinaturality clearly implies the

central fixed point property. But in the case of Freyd categories, parameterized
dinaturality does not seem sufficient (along with the diagonal property) to establish
the equivalence between traces and Conway operators, which is what motivated
our parallel and withering axioms. These do imply parameterized dinaturality,
however, though we defer the formal statement of this (Proposition 3.15) as our
proof uses the trace axioms.
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Figure 4. Premonoidal Conway Axioms
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Furthermore, our definition of a Conway operator on a Freyd category does
generalize the standard one:

Proposition 3.8. Definition 3.6 is equivalent to Definition 2.7 in the case that
the category is cartesian. �

3.3. Relating Fixpoints and Traces in Freyd Categories

We now show our main result: in a Freyd category, to give a premonoidal trace
is equivalent to giving a premonoidal Conway operator.

Theorem 3.9. Let J : C → K be a Freyd category such that K is traced, as in
Definition 3.2. Then the operation

(·)∗ : K(A ⊗ U,U) → K(A,U)

defined by, for f : A ⊗ U → U :

f∗ = trU
A,U (f ;∆)

is a Conway operator in the sense of Definition 3.6.

Proof. Naturality and centre preservation are immediate.
For the central fixed point property, assume that f : A ⊗ U → U is central.

Then

〈A, f∗〉; f
= ∆;A ⊗ trU

A,U (f ;∆); f
= ∆;A ⊗ (trA

A,A(σ); trU
A,U (f ;∆)); f (yank)

= ∆;A ⊗ (trA
A,U (σ; trU

A,U (f ;∆) ⊗ A)); f (rightt)
= ∆;A ⊗ (trA

A,U (A ⊗ trU
A,U (f ;∆);σ)); f

= ∆;A ⊗ (trA
A,U (trU

A⊗A,A⊗U (A ⊗ f ;A ⊗ ∆);σ)); f (super)
= ∆;A ⊗ (trA

A,U (trU
A⊗A,A⊗U (A ⊗ f ;A ⊗ ∆;σ ⊗ U))); f (rightt)

= ∆;A ⊗ (trA⊗U
A,U (A ⊗ f ;A ⊗ ∆;σ ⊗ U)); f (action)

= ∆;A ⊗ (trU
A,U (A ⊗ ∆;σ ⊗ U ;U ⊗ f)); f (slide)

= ∆; trU
A⊗A,A⊗U (A ⊗ A ⊗ ∆;A ⊗ σ ⊗ U ;A ⊗ U ⊗ f); f (super)

= ∆; trU
A⊗A,U (A ⊗ A ⊗ ∆;A ⊗ σ ⊗ U ;A ⊗ U ⊗ f ; f ⊗ U) (rightt)

= trU
A,U (∆ ⊗ U ;A ⊗ A ⊗ ∆;A ⊗ σ ⊗ U ;A ⊗ U ⊗ f ; f ⊗ U) (leftt)

= trU
A,U (∆; f ⊗ f) (f central)

= trU
A,U (f ;∆)

= f∗
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For central dinaturality, assume f : A ⊗ U → V and g : V → U with g central.
Then

(f ; g)∗ = trU
A,U (f ; g;∆)

= trU
A,U (f ;∆; g ⊗ V ;U ⊗ g) (g central)

= trV
A,U (A ⊗ g; f ;∆; g ⊗ V ) (sliding)

= trV
A,U (A ⊗ g; f ;∆); g (rightt)

= (A ⊗ g; f)∗; g

For the diagonal property, assume f : A ⊗ U ⊗ U → U , then

(f∗)∗ = trU
A,U (trU

A⊗U,U (f ;∆);∆)

= trU
A,U (trU

A⊗U,U⊗U (f ;∆;∆ ⊗ U)) (rightt)

= trU⊗U
A,U (f ;∆;∆ ⊗ U) (action)

= trU⊗U
A,U (f ;∆;U ⊗ ∆) (struct)

= trU
A,U (A ⊗ ∆; f ;∆) (slide, ∆ central)

= (A ⊗ ∆; f)∗

To show the withering property, assume f : A ⊗ U → B ⊗ U and g : B → C.
Then

(〈π1, π3〉; f ; g ⊗ U)∗ = trC⊗U
A,C⊗U (A ⊗ π2; f ; g ⊗ U ;∆)

= trU
A,C⊗U (f ; g ⊗ U ;∆;C ⊗ U ⊗ π2) (slide)

= trU
A,C⊗U (f ; g ⊗ U ;C ⊗ ∆)

= trU
A,C⊗U (f ;B ⊗ ∆; g ⊗ U ⊗ U)

= trU
A,B⊗U (f ;B ⊗ ∆); g ⊗ U (rightt)

= trU
A,B⊗U (f ;∆;B ⊗ U ⊗ π2); g ⊗ U

= trB⊗U
A,B⊗U (A ⊗ π2; f ;∆); g ⊗ U (slide)

= (〈π1, π3〉; f)∗; g ⊗ U
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To show the parallel property, assume f : A ⊗ U → U , g : B ⊗ V → V and,
without loss of generality, that f is central. Then

(A ⊗ σ ⊗ V ; f ⊗ g)∗

= trU⊗V
A⊗B,U⊗V (A ⊗ σ ⊗ V ; f ⊗ g;∆)

= trU
A⊗B,U⊗V (trV

A⊗B⊗U,U⊗V ⊗U (A ⊗ σ ⊗ V ; f ⊗ g;∆)) (action)
= trU

A⊗B,U⊗V (A ⊗ σ; trV
A⊗U⊗B,U⊗V ⊗U (f ⊗ B ⊗ V ;U ⊗ g;∆)) (leftt)

= trU
A⊗B,U⊗V (A ⊗ σ; f ⊗ B; trV

U⊗B,U⊗V ⊗U (U ⊗ g;∆)) (leftt)
= trU

A⊗B,U⊗V (A ⊗ σ; f ⊗ B; trV
U⊗B,U⊗V ⊗U (U ⊗ g;∆ ⊗ ∆;U ⊗ σ ⊗ V ))

= trU
A⊗B,U⊗V (A ⊗ σ; f ⊗ B; trV

U⊗B,U⊗U⊗V (U ⊗ g;∆ ⊗ ∆);U ⊗ σ) (rightt)
= trU

A⊗B,U⊗V (A ⊗ σ; f ⊗ B; trV
U⊗B,U2⊗V (∆ ⊗ B ⊗ V ;U2 ⊗ (g;∆));U ⊗ σ)

= trU
A⊗B,U⊗V (A ⊗ σ; f ⊗ B;∆ ⊗ B; trV

U2⊗B,U2⊗V (U ⊗ U ⊗ (g;∆));U ⊗ σ)
(leftt)

= trU
A⊗B,U⊗V (A ⊗ σ; f ⊗ B;∆ ⊗ B;U ⊗ U ⊗ trV

B,V (g;∆);U ⊗ σ) (super)
= trU

A⊗B,U⊗V (A ⊗ σ; f ⊗ B;∆ ⊗ B;U ⊗ σ;U ⊗ trV
B,V (g;∆) ⊗ U)

= trU
A⊗B,U⊗B (A ⊗ σ; f ⊗ B;∆ ⊗ B;U ⊗ σ) ; U ⊗ trV

B,V (g;∆) (rightt)
= trU

A⊗B,U⊗B (σ ⊗ U ;B ⊗ (f ;∆);σ ⊗ U) ; U ⊗ trV
B,V (g;∆)

= σ; trU
B⊗A,B⊗U (B ⊗ (f ;∆));σ ; U ⊗ trV

B,V (g;∆) (l/r t)
= σ;B ⊗ trU

A,B (f ;∆);σ ; U ⊗ trV
B,V (g;∆) (super)

= trU
A,B (f ;∆) ⊗ B ; U ⊗ trV

B,V (g;∆)
= f∗ ⊗ g∗

�
Remark 3.10. Hasegawa has also given a construction for a fixpoint opera-
tor from a trace in the special case of the Kleisli category of a commutative
strong monad on a cartesian category (a case in which the premonoidal struc-
ture is monoidal) [16, Theorem 7.2.1]. However, restricting our construction to
this special case does not generally give the same fixpoint operator. Hasegawa’s
construction uses the adjunction in an essential way and repeats side-effects.
Theorem 3.11. Let J : C → K be a Freyd category where K has a Conway
operator (·)∗ as defined in Definition 3.6. Then the operation

trU
A,B(·) : K(A ⊗ U,B ⊗ U) → K(A,B)

defined by, for f : A ⊗ U → B ⊗ U

trU
A,B(f) = (〈π1, π3〉; f)∗;π1 : A → B

is a premonoidal trace in the sense of Definition 3.2.

Proof. Centre preservation is immediate, and left tightening follows directly from
naturality.
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For right tightening, let f : A ⊗ U → B ⊗ U and g : B → C. Then

trU
A,C(f ; g ⊗ U)

= (〈π1, π3〉; f ; g ⊗ U)∗;π1

= (〈π1, π3〉; f ; )∗; g ⊗ U ;π1 (wither)
= (〈π1, π3〉; f ; )∗;π1; g

= trU
A,B(f); g

For yanking, observe that 〈π1, π3〉;σ is central, then

trU
U,U (σ)

= (〈π1, π3〉;σ)∗;π1

= 〈U, (〈π1, π3〉;σ)∗〉; 〈π1, π3〉;σ;π1 (cfpp)
= 〈U, (〈π1, π3〉;σ)∗〉;π3

= (〈π1, π3〉;σ)∗;π2

= 〈U, (〈π1, π3〉;σ)∗〉; 〈π1, π3〉;σ;π2 (cfpp)
= 〈U, (〈π1, π3〉;σ)∗〉;π1

= U

For the nullary case of action, assume f : A → B then

trI
A,B (f ⊗ I)

= (〈π1, π3〉; f ⊗ I)∗;π1

= 〈π1, π3〉∗; f ⊗ I;π1 (wither)
= 〈A, 〈π1, π3〉∗〉; 〈π1, π3〉; f ⊗ I;π1 (cfpp)
= 〈f, 〈π1, π3〉∗;π2〉;π1

= f

For the binary case of action, assume f : A ⊗ U ⊗ V → B ⊗ U ⊗ V , then

trU
A,B (trV

A⊗U,B⊗U (f))

= (〈π1, π3〉; (〈π1, π2, π5〉; f)∗; 〈π1, π2〉)∗;π1

= (A ⊗ 〈π1, π2〉; 〈π1, π3〉; (〈π1, π2, π5〉; f)∗)∗; 〈π1, π2〉;π1 (dinaturality)
= (〈π1, π3〉; (〈π1, π2, π5〉; f)∗)∗;π1

= ((〈π1, π3, π7〉; f)∗)∗;π1 (naturality)
= (A ⊗ ∆; 〈π1, π3, π7〉; f)∗;π1 (diagonal)
= (〈π1, π3, π4〉; f)∗;π1

= trU⊗V
A,B (f)
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To show sliding, let f : A ⊗ U → B ⊗ V and g : V → U with g central. Then

trU
A,B(f ; (B ⊗ g))

= (〈π1, π3〉; f ;B ⊗ g)∗;π1

= (A ⊗ B ⊗ g; 〈π1, π3〉;h)∗;B ⊗ g;π1 (dinaturality)
= (A ⊗ B ⊗ g; 〈π1, π3〉;h)∗;π1 (g central)
= (〈π1, π3〉;A ⊗ g;h)∗;π1

= trV
A,B((A ⊗ g); f)

For superposing, assume f : A ⊗ U → B ⊗ U then

trU
C⊗A,C⊗B (f)

= (〈π1, π2, π5〉;C ⊗ f)∗; 〈π1, π2〉
= (C ⊗ σ ⊗ B ⊗ U ; 〈π1, π3, π5〉;C ⊗ f)∗; 〈π1, π2〉
= (C ⊗ σ ⊗ B ⊗ U ;π1 ⊗ (〈π1, π3〉; f))∗; 〈π1, π2〉
= (π∗

1 ⊗ (〈π1, π3〉; f)∗); 〈π1, π2〉 (parallel)
= ((〈C, π∗

1〉;π1) ⊗ (〈π1, π3〉; f)∗); 〈π1, π2〉 (cfpp)
= (C ⊗ (〈π1, π3〉; f)∗); 〈π1, π2〉
= C ⊗ ((〈π1, π3〉; f)∗;π1)

= C ⊗ trU
A,B (f)

�

Proposition 3.12. The constructions of trace from Conway operator and of Con-
way operator from trace given in Theorems 3.11 and 3.9 respectively are mutually
inverse.

Proof. Assume we have a premonoidal Conway operator (·)∗. The Conway op-
erator obtained from the trace obtained from (·)∗ maps f : A ⊗ U → U to
(〈π1, π3〉; f ;∆)∗;π1. Then

(〈π1, π3〉; f ;∆)∗;π1

= (A ⊗ π2; f ;∆)∗;π1

= (A ⊗ ∆;A ⊗ π2; f)∗;∆;π1 (dinaturality)
= (f)∗;∆;π1

= (f)∗

as required.
Going the other way around, assume we have a premonoidal trace tr · on a

Freyd category. Then we have another trace which maps h : A ⊗ U → B ⊗ U to
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trB⊗U
A,B⊗U (A ⊗ π2;h;∆);π1 and we calculate

trB⊗U
A,B⊗U (A ⊗ π2;h;∆);π1

= trU
A,B⊗U (h;∆;B ⊗ U ⊗ π2);π1 (sliding)

= trU
A,B⊗U (h;B ⊗ ∆);π1

= trU
A,B (h;B ⊗ ∆;B ⊗ π1) (rightt)

= trU
A,B (h)

�
Thus we have succeeded in establishing a premonoidal generalization of Theo-

rem 2.9.
Remark 3.13. Starting from a fixpoint operator, there is another candidate for
the definition of a trace, viz

tr′(f) = 〈A, (f ;π2)∗〉; f ;π1 : A → B

where f : A ⊗ U → B ⊗ U . If K is monoidal this is the same as the construction
used in Theorem 3.11, but in the general premonoidal case they are different, and
tr′ does not seem to have useful properties.

Given the equivalence between traces and Conway operators in Freyd categories,
we can now use the trace axioms to prove a useful lemma about Conway operators.
We can then prove our earlier claim that our axioms for Conway operators imply
the parameterized form of central dinaturality.
Lemma 3.14. If h : C ⊗ A ⊗ U → U then

(A ⊗ h)∗ = ∆ ⊗ C;A ⊗ σ;A ⊗ h∗

Proof.

(A ⊗ h)∗

= trA⊗U
A⊗C,A⊗U (A ⊗ h;∆) (equivalence)

= trA
A⊗C,A⊗U (trU

A⊗C⊗A,A⊗U⊗A (A ⊗ h;∆)) (action)
= trA

A⊗C,A⊗U (trU
A⊗C⊗A,A⊗U⊗A (A ⊗ h;A ⊗ ∆;∆ ⊗ U ⊗ U ;A ⊗ σ ⊗ U))

= trA
A⊗C,A⊗U (trU

A⊗C⊗A,A⊗U (A ⊗ h;A ⊗ ∆);∆ ⊗ U ;A ⊗ σ) (rightt)
= trA

A⊗C,A⊗U (A ⊗ trU
C⊗A,U (h;∆);∆ ⊗ U ;A ⊗ σ) (super)

= trA
A⊗C,A⊗U (A ⊗ h∗;∆ ⊗ U ;A ⊗ σ) (equivalence)

= trA
A⊗C,A⊗U (∆ ⊗ C ⊗ A;A ⊗ σ ⊗ A;A ⊗ C ⊗ σ;A ⊗ h∗ ⊗ A)

= ∆ ⊗ C;A ⊗ σ; trA
A⊗C⊗A,A⊗C⊗A (A ⊗ C ⊗ σ);A ⊗ h∗ (lt/rt)

= ∆ ⊗ C;A ⊗ σ;A ⊗ C ⊗ trA
A,A (σ);A ⊗ h∗ (super)

= ∆ ⊗ C;A ⊗ σ;A ⊗ h∗ (yank)

�
Proposition 3.15. A Conway operator on a Freyd category satisfies parameter-
ized central dinaturality.
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Proof. Assume f : A ⊗ U → V and g : A ⊗ V → U with g central. Then

(〈π1, f〉; g)∗

= (∆ ⊗ U ;A ⊗ f ; g)∗

= (A ⊗ g;∆ ⊗ U ;A ⊗ f)∗; g (dinaturality)
= (∆ ⊗ A ⊗ V ;A ⊗ A ⊗ g;A ⊗ f)∗; g
= ∆; (A ⊗ (A ⊗ g; f))∗; g (naturality)
= ∆;∆ ⊗ A;A ⊗ σ;A ⊗ (A ⊗ g; f)∗; g (Lemma 3.14)
= ∆;A ⊗ ∆;A ⊗ (A ⊗ g; f)∗; g
= ∆;A ⊗ (∆ ⊗ V ;A ⊗ g; f)∗; g (naturality)
= 〈A, (〈π1, g〉; f)∗〉; g

�

4. Examples

4.1. Monoids

Let M be a traced symmetric monoidal category as in Definition 2.4 and (M,µ :
M ⊗ M → M,η : I → M) be a monoid in M. Let K be the Kleisli category of
the monad TA = M ⊗ A on M, so K(A,B) = M(A,M ⊗ B). Then the tensor
on M lifts so that J : M → K is a centred symmetric premonoidal category (it is
monoidal iff M is a commutative monoid).
Proposition 4.1. In the above situation, the operation

t̂r
U

A,B : K(A ⊗ U,B ⊗ U) → K(A,B)

defined by t̂r
U

A,B(f) = trU
A,M⊗B(f) is a premonoidal trace. �

Notions of computation based on monoids are fairly common. Commutative
monoids such as the natural numbers under addition can be used for modelling re-
source usage (e.g. timed computations) whereas non-commutative monoids model,
for example, side-effecting output. In Haskell syntax, the signature could look like
this:
class Monoid m where

mult :: (m,m) -> m
unit :: m

newtype Cross m a = Cross (m,a) deriving Show

instance Monoid m => Monad (Cross m) where
return a = Cross (unit,a)
Cross(m,a) >>= f = let Cross(m’,b) = f a

in Cross(mult (m,m’), b)
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instance Monoid [a] where
mult (s,t) = s ++ t
unit = []

-- command which writes to the output
output s = Cross(s,())

If we then apply our construction of a premonoidal Conway operator from the
trace defined in Proposition 4.1 then we end up with an mfix operation of the
type described by Launchbury and Erkök:
instance Monoid m => MonadRec (Cross m) where

mfix f = let Cross(m,a) = f a
in Cross(m,a)

And this does have the expected behaviour:
nats_output =

mfix (\ys -> do output "first "
output "second."
return (0 : map succ ys))

> nats_output
Cross ("first second.",[0,1,2,3,4,5,6,7,8,9,...

The two side effects have happened once only and in the order specified.

4.2. State

Let M be a traced symmetric monoidal category, S be an object of M and K be
the category with the same objects as M and K(A,B) = M(S⊗A,S⊗B) with the
evident composition. If M is closed then K is equivalent to the Kleisli category of
the state monad TA = S −◦ S ⊗ A. Then J : M → K is premonoidal.
Proposition 4.2. In the above situation, the operation

t̂r
U

A,B : K(A ⊗ U,B ⊗ U) → K(A,B)

defined by t̂r
U

A,B(f) = trU
S⊗A,S⊗B(f) is a premonoidal trace. �

Again, the derived fixed point operator on the Kleisli category is easily defined
in Haskell:
newtype State s a = State (s -> (s,a))

instance Monad (State s) where
return a = State (\s ->(s,a))
State m >>= f = State (\s -> let (s’,a) = m s

State m’ = f a
in m’ s’)
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instance MonadRec (State s) where
mfix f = State (\s -> let State m = f a

(s’,a) = m s
in (s’,a))

Note how the final value, a is recursively defined, but the final state s’ is not –
operationally, each time we go around the loop, the initial state is ‘snapped back’
to s.

5. Related Work

Compared with Launchbury and Erkök’s work on axiomatizing mfix, our def-
initions and results are in a rather more general setting, but account for rather
fewer concrete examples. The axioms in [22] are almost identical to our definition
of a premonoidal Conway operator except that they weaken some of our equations
to inequations (interpreted in a concrete category of domains), add a strictness
condition on one and regard some as additional properties which may hold in
some cases (i.e. not part of the basic definition of what they call a ‘recursive
monad’). These weaker conditions admit definitions of mfix for monads such as
Maybe (1 + (·)), lazy lists and Haskell’s IO monad [10] which do not have Conway
operators satisfying our conditions.

Paterson has designed a convenient syntax for programming with Hughes’s ar-
rows (just as Haskell adds do to simplify programming with monads) [28, 29] .
Paterson gives axioms for an ArrowLoop operation which are the same as our
definition of a premonoidal trace; our results thus prove an equivalence between
ArrowLoop and a particular (newly identified) class of mfixs.

Jeffrey [20] has also considered a variant of traces in a premonoidal setting,
though his construction is rather different from ours: he considers a partial trace
(only applicable to certain maps) on the category of values rather than on that of
computations.

Friedman and Sabry have also investigated value recursion [13], though their
approach is rather different from the axiomatic one which we and the others cited
here have taken. They view the ability to define computations recursively as an
additional effect and give a ‘monad transformer’ which adds a state-based updating
implementation of recursion to an arbitrary monad. Lifting the operations of the
underlying monad to the new one is left to the programmer (and can generally be
done in different ways). Moggi and Sabry have further developed this operational
approach [26], giving a semantics for mfix in which the side-effecting body is first
evaluated (without using the bound variable) and the resulting value is closed up
by wrapping it in an ordinary (value) fix.
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6. Conclusions and Further Work

We have formulated and proved a natural generalization of the theorem relating
traces and Conway operators to the case of premonoidal categories. This has appli-
cations to the semantics of some non-standard recursion and feedback operations
on computations which have been found useful in functional programming.

It would be interesting to see if one could explain Launchbury and Erkök’s
weaker axiomatization in a more general setting. The natural thing to try here is
to be more explicit about the presence of an abstract lifting monad, along the lines
of [14]. This may also help establish a connection with the partial trace operation
used by Jeffrey [20]. We would also like to have some more examples.

We are in the process of investigating the premonoidal version of the ‘geometry
of interaction’ construction, which traditionally embeds a traced monoidal cate-
gory into a compact closed one. This is interesting from a mathematical view and
may also have some connection to the building of layered protocol stacks from
stateful components.

We thank the referees and Zoltán Ésik for their helpful feedback.
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[11] Z. Ésik. Axiomatizing iteration categories. Acta Cybernetica, 14, 1999.
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Appendix A. Why ‘Conway’ operators?

We give a brief explanation in category-theoretic terms of the link between
Conway operators and the work of John Horton Conway. Consider a category
C with biproducts. The notions of biproduct and of traced symmetric monoidal
category are self-dual. It follows therefore from Theorem 2.9 that to give a trace
on such a C is equally to give a Conway operator in our sense and to give one in
the dual sense favoured by Bloom and Ésik. Now restrict to the case where C is a
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Lawvere theory (or the opposite of one as in [4], but it amounts to the same thing).
Let the generating object be U . A category with biproducts is enriched in com-
mutative monoids (so we can add maps) and it follows that EndC(U) = C(U,U)
is a rig (ring without negatives) in the terminology promoted by Lawvere and
Schanuel. (Bloom and Ésik use the older ‘semi-ring’.) C is completely determined
by EndC(U): maps from Un to Um are given by m × n matrices over EndC(U)
(using the usual column vector conventions).

We consider a Conway operator on such a C, that is, a matrix Conway theory
for Bloom and Ésik [4]. They show the following
Theorem A.1. To give a Conway operator on a Lawvere theory C with biproducts
is to equip the rig EndC(U) with a unary operator a �→ a∗ satisfying the Conway
identities

(ab)∗ = 1 + a(ba)∗b
(a + b)∗ = (a∗b)∗a∗

The Conway identities appear in [7] in the course of an analysis of the theory
of regular languages.
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